Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Fluoro-1-[(4*S*,5*R*)-5-(2-hydroxyethyl)-2,2-dimethyl-1,3-dioxolan-4-yl]pyrimidine-2,4(1*H*,3*H*)-dione

Angel Mendoza,^a* Martha Sosa-Rivadeneyra,^b Fernando Sartillo-Piscil,^b Leticia Quintero^b and Marcos Flores-Alamo^c

^aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, ^bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and ^cFacultad de Química, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico Correspondence e-mail: angel.mendoza.m@gmail.com

Received 26 April 2010; accepted 30 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.071; data-to-parameter ratio = 9.9.

In the title compound, $C_{11}H_{15}FN_2O_5$, the five-membered ring has an envelope conformation, while the six-membered ring is essentially planar, with a maximum deviation of 0.032 (2) Å from the mean plane. The crystal packing is stabilized by intermolecular N-H···O and O-H···O hydrogen bonds, generating a layer structure parallel to (001).

Related literature

For applications of modified nucleosides in medical chemistry, see: Huryn & Okabe (1992); Minuk *et al.* (1992); Luscombe *et al.* (1996); Korba & Boyd (1996). For the synthesis, see: Valdivia *et al.* (2005); Xie *et al.* (1996). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{11}H_{15}FN_2O_5$ $M_r = 274.25$ Monoclinic, C2

a = 20.8905 (8)
b = 5.5751(1)
c = 135630(5)

 $\beta = 126.297 (6)^{\circ}$ $V = 1273.21 (12) \text{ Å}^3$ Z = 4Cu $K\alpha$ radiation

Data collection

Oxford Diffraction Gemini Atlas CCD diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.885, T_{\rm max} = 0.964$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.071$ S = 1.041786 reflections 181 parameters 1 restraint $\mu = 1.06 \text{ mm}^{-1}$ T = 298 K $0.40 \times 0.12 \times 0.08 \text{ mm}$

4606 measured reflections 1786 independent reflections 1732 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.013$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.23 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), 498 Friedel pairs Flack parameter: 0.0 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N\cdotsO5^{i}$ O5-H1O\cdotsO2^{ii}	0.83 (2) 0.75 (3)	2.01 (2) 2.16 (3)	2.828 (2) 2.876 (2)	167 (3) 160 (3)
Summatry and a (i)	x 1 ³ x 1 <i>π</i>	+2, (ii) $x + 1$	11 -	

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, -z + 2; (ii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Special thanks to BUAP for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2543).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Huryn, D. M. & Okabe, M. (1992). Chem. Rev. 92, 1745–1768. Korba, B. E. & Boyd, M. R. (1996). Antimicrob. Agents Chemother. 40, 1282–
- Korba, B. E. & Boyd, M. R. (1996). Antimicrob. Agents Chemoiner. 40, 1282– 1284.
- Luscombe, C., Pedersen, J., Uren, E. & Locarnini, S. (1996). *Hepatology* 24, 766–773.
- Minuk, G. Y., German, G. B., Bernstein, C., Benarroch, A., Gauthiar, T. & Sekla, L. (1992). *Clin. Invest. Med.* 15, 506–512.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valdivia, V., Hernández, A., Rivera, A., Sartillo-Piscil, F., Loukaci, A., Fourrey, J.-L. & Quintero, L. (2005). *Tetrahedron Lett.* **46**, 6511–6514.
- Xie, M., Berges, D. A. & Robins, M. (1996). J. Org. Chem. 61, 5178-5179.

Acta Cryst. (2010). E66, o1317 [doi:10.1107/S1600536810016065]

5-Fluoro-1-[(4*S*,5*R*)-5-(2-hydroxyethyl)-2,2-dimethyl-1,3-dioxolan-4-yl]pyrimidine-2,4(1*H*,3*H*)-dione

A. Mendoza, M. Sosa-Rivadeneyra, F. Sartillo-Piscil, L. Quintero and M. Flores-Alamo

Comment

For many years, design of modified nucleosides has been a focal point of research in medicinal chemistry (Huryn & Okabe, 1992). Modified nucleosides have acquired an important role as therapeutic agents for the treatment of patients with devastating infections with viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and herpes viruses. A class of nucleoside analogues for antiviral chemotherapy is that where cyclic carbohydrate moiety is replaced with openchain "acyclic" sugar moieties. Among purine acyclic nucleosides, are Acyclovir, Ganciclovir and Penciclovir (Minuk *et al.*, 1992; Luscombe *et al.*, 1996; Korba & Boyd, 1996).

In this context and as result of our continuing investigations on the synthesis of nucleoside analogues, we report a new compound **1** (Scheme 1). This new analogue might present a similarity with a number of acyclic nucleosides, which showed remarkable antiviral properties.

In the present paper, we report the structure of title compound **1**. In the [(1'*S*, 2'*R*)-(1', 2'-*O*-isopropylidene-4'-hydroxy-1-butyl)], the five member ring (C5/C6/O3/O4/C9) shows an envelope conformation on atom C6 with puckering parameters (Cremer & Pople, 1975) $q_2 = 0.238$ (2) Å and $\varphi_2 = 69.8$ (6)°. For the six member ring uracil, shows a planar configuration with torsion angle (N1—C4—N2—C3) of 4.8 (3)°, and C1—C2 = 1.325 (3) Å and N2—C4 = 1.384 (2) Å (double bond). The crystal packing is stabilized by two intermolecular hydrogen bonds [O5…O2 = 2.828 (2) Å and N2…O5 = 2.876 (2) Å], generating a layer parallel to the (001) plane.

Experimental

Deshomologation of previos nucleoside analogue, 1-[(1'*S*,2'*R*,4'*S*)-(1',2'-*O*-isopropylidene-4',5'-dihydroxy-1'-pentyl)]-5fluorouracil, was achieved following non-aqueous protocol (Valdivia *et al.*, 2005; Xie *et al.*, 1996). Reaction was carried out by two steps: a) periodic acid/ethyl acetate, 30 min, b) EtOH/H2O/ NaBH4, 20 min, rt. Final purification of compound 1 was achieved by crystallization from hexane. Yield 80%, white solid, m.p. 184 °C; $[\alpha]_D$ -18.51 (c 1.0, CH₃OH). ¹H NMR (300 MHz, CDCl₃/TMS) 1.53 (s, 3H), 1.57 (s, 3H), 1.95 (m, 1H), 2.11 (m, 1H), 3.80 (m, 2H), 4.21 (m, 1H), 5.90 (d, 1H, J = 5.1 Hz), 7.3 (s, 1H). ¹³C MNR (75 MHz, CDCl₃/TMS) 26.9, 27.9, 34.9, 55.8, 58.9, 79.4, 86.8, 111.6, 142.2, 149.5, 157.5.

Refinement

H atoms bonded to N2 and O5 atoms were located in a difference Fourier map and refined with free coordinates and isotropic U parameters. H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl groups.

Figures

Fig. 2. The packing of compound 1, viewed down the b axis, showing one layer of molecules connected by O5-H···O2 and N2-H···O5 hydrogen bonds (dashed lines).

5-Fluoro-1-[(4S,5R)-5-(2-hydroxyethyl)-2,2-dimethyl-1,3- dioxolan-4-yl]pyrimidine-2,4(1H,3H)-dione

Crystal data C₁₁H₁₅FN₂O₅ F(000) = 576 $M_r = 274.25$ $D_{\rm x} = 1.431 {\rm Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184$ Å Monoclinic, C2 Hall symbol: C 2y Cell parameters from 4215 reflections $\theta = 4.0 - 68.0^{\circ}$ *a* = 20.8905 (8) Å $\mu = 1.06 \text{ mm}^{-1}$ *b* = 5.5751 (1) Å T = 298 K*c* = 13.5639 (5) Å $\beta = 126.297 \ (6)^{\circ}$ Prism, colorless $V = 1273.21 (12) \text{ Å}^3$ $0.40 \times 0.12 \times 0.08 \text{ mm}$ Z = 4

Data collection

Oxford Diffraction Gemini Atlas CCD diffractometer	1786 independent reflections
Radiation source: fine-focus sealed tube	1732 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.013$
Detector resolution: 10.4685 pixels mm ⁻¹	$\theta_{\text{max}} = 68.1^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$
ω scans	$h = -22 \rightarrow 24$
Absorption correction: analytical (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	$k = -4 \rightarrow 6$
$T_{\min} = 0.885, T_{\max} = 0.964$	$l = -16 \rightarrow 16$
4606 measured reflections	

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
	$w = 1/[\sigma^2(F_0^2) + (0.038P)^2 + 0.4768P]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.071$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$
1786 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
181 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
1 restraint	Extinction coefficient: 0.0075 (4)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 498 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.0 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.69200 (8)	0.0051 (3)	0.95722 (12)	0.0519 (4)
N1	0.66380 (8)	0.2920 (3)	0.81679 (12)	0.0339 (3)
O4	0.72382 (7)	0.3751 (3)	0.65042 (11)	0.0438 (3)
F1	0.52029 (9)	0.7673 (3)	0.69645 (15)	0.0816 (5)
05	0.90402 (9)	0.7069 (3)	0.88915 (13)	0.0478 (4)
O2	0.49424 (9)	0.5250 (3)	0.84757 (15)	0.0627 (5)
C5	0.72230 (11)	0.1894 (4)	0.80156 (17)	0.0403 (4)
Н5	0.7609	0.0950	0.8745	0.048*
N2	0.59707 (9)	0.2801 (4)	0.90550 (15)	0.0434 (4)
C1	0.61955 (10)	0.4901 (4)	0.75175 (16)	0.0418 (4)
H1	0.6291	0.5673	0.7009	0.050*
O3	0.68552 (11)	0.0402 (3)	0.69943 (16)	0.0681 (5)
C4	0.65428 (10)	0.1784 (4)	0.89752 (15)	0.0362 (4)
C6	0.76688 (9)	0.3754 (4)	0.78102 (14)	0.0350 (4)
H6	0.7625	0.5332	0.8084	0.042*
C2	0.56349 (11)	0.5732 (4)	0.76007 (18)	0.0466 (5)
C3	0.54650 (10)	0.4653 (4)	0.83818 (17)	0.0435 (5)
C8	0.89973 (11)	0.4915 (4)	0.83002 (18)	0.0469 (5)
H8A	0.9528	0.4318	0.8649	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8B	0.8733	0.5206	0.7435	0.056*
C7	0.85368 (10)	0.3099 (4)	0.84748 (17)	0.0437 (5)
H7A	0.8779	0.2948	0.9342	0.052*
H7B	0.8572	0.1551	0.8184	0.052*
C9	0.68429 (13)	0.1521 (4)	0.60232 (19)	0.0533 (6)
C10	0.72705 (17)	-0.0147 (5)	0.5721 (2)	0.0689 (7)
H10A	0.6979	-0.1621	0.5400	0.103*
H10B	0.7793	-0.0473	0.6448	0.103*
H10C	0.7313	0.0588	0.5121	0.103*
C11	0.60061 (17)	0.2034 (8)	0.4934 (3)	0.1094 (13)
H11A	0.5725	0.0550	0.4592	0.164*
H11B	0.6016	0.2893	0.4330	0.164*
H11C	0.5743	0.2986	0.5185	0.164*
H1N	0.5950 (12)	0.236 (5)	0.9622 (19)	0.048 (6)*
H1O	0.9348 (15)	0.789 (6)	0.896 (2)	0.072 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1	0.0606 (7)	0.0506 (9)	0.0586 (7)	0.0216 (7)	0.0430 (7)	0.0239 (8)
N1	0.0336 (6)	0.0365 (9)	0.0345 (7)	0.0036 (7)	0.0218 (6)	0.0044 (6)
O4	0.0520 (7)	0.0397 (8)	0.0390 (6)	-0.0028 (6)	0.0265 (5)	0.0009 (6)
F1	0.0799 (8)	0.0748 (11)	0.1109 (11)	0.0463 (8)	0.0678 (8)	0.0532 (10)
O5	0.0529 (8)	0.0445 (10)	0.0622 (8)	-0.0061 (7)	0.0430 (7)	-0.0071 (7)
O2	0.0621 (8)	0.0584 (11)	0.0954 (11)	0.0167 (8)	0.0619 (8)	0.0137 (10)
C5	0.0465 (9)	0.0352 (11)	0.0509 (9)	0.0048 (9)	0.0353 (8)	0.0038 (9)
N2	0.0502 (8)	0.0455 (10)	0.0498 (8)	0.0083 (8)	0.0381 (7)	0.0092 (8)
C1	0.0410 (8)	0.0437 (12)	0.0447 (9)	0.0064 (9)	0.0275 (7)	0.0138 (9)
O3	0.1087 (12)	0.0487 (10)	0.0938 (11)	-0.0334 (9)	0.0857 (10)	-0.0292 (9)
C4	0.0368 (8)	0.0390 (11)	0.0359 (8)	0.0011 (8)	0.0232 (7)	0.0018 (8)
C6	0.0397 (8)	0.0320 (10)	0.0388 (8)	0.0022 (8)	0.0263 (7)	0.0006 (8)
C2	0.0444 (9)	0.0382 (12)	0.0563 (11)	0.0122 (9)	0.0294 (9)	0.0139 (9)
C3	0.0417 (8)	0.0401 (12)	0.0557 (10)	0.0025 (9)	0.0326 (8)	0.0013 (9)
C8	0.0430 (9)	0.0492 (13)	0.0608 (11)	0.0008 (10)	0.0374 (9)	-0.0079 (11)
C7	0.0400 (9)	0.0402 (12)	0.0531 (10)	0.0056 (9)	0.0288 (8)	0.0001 (9)
С9	0.0641 (12)	0.0483 (14)	0.0551 (11)	-0.0145 (11)	0.0394 (10)	-0.0142 (10)
C10	0.1132 (18)	0.0523 (16)	0.0761 (14)	-0.0072 (15)	0.0752 (15)	-0.0113 (13)
C11	0.0695 (16)	0.110 (3)	0.086 (2)	-0.0123 (19)	0.0121 (15)	-0.043 (2)

Geometric parameters (Å, °)

O1—C4	1.206 (2)	O3—C9	1.444 (3)
N1—C1	1.373 (3)	C6—C7	1.516 (2)
N1—C4	1.378 (2)	С6—Н6	0.9800
N1—C5	1.471 (2)	C2—C3	1.434 (3)
O4—C9	1.419 (3)	C8—C7	1.509 (3)
O4—C6	1.435 (2)	C8—H8A	0.9700
F1—C2	1.345 (2)	C8—H8B	0.9700
O5—C8	1.417 (3)	С7—Н7А	0.9700

O5—H1O	0.75 (3)	С7—Н7В	0.9700
O2—C3	1.218 (2)	C9—C11	1.504 (4)
C5—O3	1.393 (3)	C9—C10	1.505 (3)
C5—C6	1.526 (3)	C10—H10A	0.9600
С5—Н5	0.9800	C10—H10B	0.9600
N2—C3	1.369 (3)	C10—H10C	0.9600
N2—C4	1.384 (2)	C11—H11A	0.9600
N2—H1N	0.83 (2)	C11—H11B	0.9600
C1—C2	1.325 (3)	C11—H11C	0.9600
C1—H1	0.9300		
C1—N1—C4	121.43 (14)	N2—C3—C2	112.25 (16)
C1—N1—C5	121.47 (14)	O5—C8—C7	108.20 (15)
C4—N1—C5	117.10(15)	O5—C8—H8A	110.1
C9—O4—C6	109.72 (14)	С7—С8—Н8А	110.1
C8—O5—H1O	110 (2)	O5—C8—H8B	110.1
O3—C5—N1	110.92 (16)	С7—С8—Н8В	110.1
O3—C5—C6	105.14 (14)	H8A—C8—H8B	108.4
N1—C5—C6	114.14 (16)	C8—C7—C6	113.23 (17)
O3—C5—H5	108.8	С8—С7—Н7А	108.9
N1—C5—H5	108.8	С6—С7—Н7А	108.9
С6—С5—Н5	108.8	C8—C7—H7B	108.9
C3 - N2 - C4	128 17 (16)	С6—С7—Н7В	108.9
$C_3 = N_2 = H_1 N$	113 4 (16)	H7A—C7—H7B	107.7
C4— $N2$ — $H1N$	118.1 (16)	04-09-03	105 54 (16)
C^2 — C^1 — N^1	121 28 (17)	04-09-011	107.9 (2)
$C_2 = C_1 = H_1$	119.4	03 - 09 - 011	107.9(2)
N1-C1-H1	119.4	04 - C9 - C10	112 88 (19)
$C_{5} = C_{3} = C_{9}$	110.51 (16)	03 - 09 - 010	106.8 (2)
01 - C4 - N1	123 91 (16)	$C_{11} - C_{9} - C_{10}$	1125(2)
01 - C4 - N2	121.80 (16)	C9-C10-H10A	109.5
N1 - C4 - N2	114 29 (16)	C9-C10-H10B	109.5
04-6-7	112 88 (14)	H10A—C10—H10B	109.5
04 - 6 - 6	102 72 (13)	C9-C10-H10C	109.5
C7 - C6 - C5	111 86 (15)	H10A - C10 - H10C	109.5
04—C6—H6	109.7	H10B-C10-H10C	109.5
C7—C6—H6	109.7	C9-C11-H11A	109.5
C5—C6—H6	109.7	C9—C11—H11B	109.5
C1 - C2 - F1	121 20 (18)	H11A-C11-H11B	109.5
C1 - C2 - C3	122.28 (19)	C9-C11-H11C	109.5
$F_1 - C_2 - C_3$	116 51 (17)		109.5
02 - 03 - N2	121 46 (18)	H11B_C11_H11C	109.5
02 - 03 - 102	121.40(10) 1263(2)	iiiib—eii—iiiie	109.5
	120.5 (2)		141.06 (16)
C1 - N1 - C5 - O3	-82.0(2)	NI-C5-C6-C7	141.06 (16)
U4 - N1 - U5 - U3	96.83 (19)	NI = CI = C2 = C2	1/9.91 (19)
C1—N1—C5—C6	36.5 (2)	NI - CI - C2 - C3	1.0 (3)
C4—N1—C5—C6	-144.63 (16)	C4—N2—C3—O2	173.9 (2)
C4—N1—C1—C2	-3.0 (3)	C4—N2—C3—C2	-6.5 (3)
C5—N1—C1—C2	175.8 (2)	C1—C2—C3—O2	-177.1 (2)

N1—C5—O3—C9	107.78 (18)	F1—C2—C3—O2	4.0 (3)
C6—C5—O3—C9	-16.1 (2)	C1—C2—C3—N2	3.3 (3)
C1-N1-C4-O1	-179.53 (18)	F1—C2—C3—N2	-175.64 (18)
C5—N1—C4—O1	1.6 (3)	O5—C8—C7—C6	67.2 (2)
C1—N1—C4—N2	0.4 (3)	O4—C6—C7—C8	65.3 (2)
C5—N1—C4—N2	-178.50 (15)	C5—C6—C7—C8	-179.47 (16)
C3—N2—C4—O1	-175.3 (2)	C6—O4—C9—O3	15.2 (2)
C3—N2—C4—N1	4.8 (3)	C6—O4—C9—C11	134.1 (2)
C9—O4—C6—C7	96.42 (19)	C6—O4—C9—C10	-101.1 (2)
C9—O4—C6—C5	-24.21 (19)	C5—O3—C9—O4	1.4 (2)
O3—C5—C6—O4	24.16 (19)	C5—O3—C9—C11	-115.3 (2)
N1—C5—C6—O4	-97.61 (16)	C5—O3—C9—C10	121.8 (2)
O3—C5—C6—C7	-97.17 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$	
N2—H1N····O5 ⁱ	0.83 (2)	2.01 (2)	2.828 (2)	167 (3)	
O5—H1O····O2 ⁱⁱ	0.75 (3)	2.16 (3)	2.876 (2)	160 (3)	
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+2$; (ii) $x+1/2$, $y+1/2$, z.					

H1n^x

